Reactivity Patterns of N-Arylnitrenium Ions: Lack of Correlation with $\boldsymbol{\sigma}^{+}$

Michael Novak,* Mary Jo Kahley, Jing Lin,
Sonya A. Kennedy, and Lee Ann Swanegan
Department of Chemistry, Miami University
Oxford, Ohio 45056
Received September 7, 1994
The reactivities of N-arylnitrenium ions, measured by log($k_{\mathrm{az}} / k_{\mathrm{s}}$), are not correlated by σ^{+}, but they do follow the thermodynamic driving force for hydration estimated from $a b$ initio calculations.
The esters 1a-j, $\mathrm{X}=\mathrm{SO}_{3}{ }^{-}$or $\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$, decompose in $\mathrm{H}_{2} \mathrm{O}$ containing $\mathrm{N}_{3}{ }^{-}$to generate 4-11 (Scheme 1). ${ }^{1}$ The characteristics of these reactions are similar to those reported for $1 \mathrm{~g}, \mathrm{X}$ $=\mathrm{SO}_{3}{ }^{-}$, and $1 \mathrm{~h}, \mathrm{X}=\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}:{ }^{2,3}$ the rate constant, k_{0}, is independent of $\left[\mathrm{N}_{3}{ }^{-}\right](\mu=0.5)$, the yields of the rearrangement products 12 or 13 are unaffected by $\left[\mathrm{N}_{3}{ }^{-}\right]$, and the yields of products of attack by $\mathrm{H}_{2} \mathrm{O}(4-9)$ and $\mathrm{N}_{3}{ }^{-}(10,11)$ vary with [$\mathrm{N}_{3}{ }^{-}$] in a manner consistent with competitive trapping of a common intermediate. The mechanism of Scheme 1 is consistent with these observations ${ }^{2}$ and is supported by nearly equivalent $k_{\mathrm{az}} / k_{\mathrm{s}}$ determined from product data or measured directly for 3 g and 3 j generated by LFP. ${ }^{4}$

Data for k_{0} for $\mathbf{1 a}-\mathrm{j}, \mathrm{X}=\mathrm{SO}_{3}{ }^{-}$or $\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$, in $5 \% \mathrm{CH}_{3}{ }^{-}$ $\mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(\mu=0.5)$ and $k_{\mathrm{az}} / k_{\mathrm{s}}$ for the corresponding cations ${ }^{2,5}$ are shown in Table 1. Log k_{0} correlates with σ^{+}for esters of N -arylhydroxamic acids (1a, $\mathbf{1 c}, \mathbf{1 g}, \mathbf{1 j}, \mathrm{X}=\mathrm{SO}_{3}{ }^{-}$, and $\mathbf{1 c}, \mathbf{1 f}$, $\mathbf{1 j}, \mathrm{X}=\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$) with $\varrho^{+} \approx-8.0$ (Figure 1 A). Similar correlations have been observed for solvolysis of other precursors of N-arylnitrenium ions. ${ }^{6} \log \left(k_{\text {az }} / k_{\mathrm{s}}\right)$ correlates adequately with σ^{+}for 1-phenylethyl and cumyl carbocations, which react with $\mathrm{N}_{3}{ }^{-}$at a diffusion-controlled rate..$^{7.8}$ No such correlation exists for the N-acetyl- N -arylnitrenium ions, which also must react with $\mathrm{N}_{3}{ }^{-}$at a diffusion-controlled rate (Figure 1B).4,9 Trapping of $3 \mathrm{a}-$ j by attack of $\mathrm{H}_{2} \mathrm{O}$ on the aromatic ring is not strongly governed by the +R effect measured by σ^{+}. To determine what does govern this reaction, $\log \left(k_{\mathrm{az}} / k_{\mathrm{s}}\right)$ was plotted vs the relative thermodynamic driving force for hydration of these ions, ΔH_{1} of eq 1 , determined from ab initio calculations at the RHF/6-31G*//3-21G level ${ }^{10}$ (Table 1). There is a linear

correlation $(r=0.95)$ of $\log \left(k_{a z} / k_{\mathrm{s}}\right)$ with ΔH_{1} except when $k_{\mathrm{az}} /$

[^0]Scheme 1

Table 1. Rate Constants for Hydrolysis of $\mathbf{1}, k_{\mathrm{az}} / k_{\mathrm{s}}$ for $\mathbf{3}$, and ΔH_{1} from $a b$ Initio MO Calculations

3	X in 1	$k_{0}\left(\mathrm{~s}^{-1}\right)^{a}$	$k_{\mathrm{az}} / k_{\mathrm{s}}{ }^{\text {a,b }}$	$\Delta H_{1}{ }^{c}(\mathrm{kcal} / \mathrm{mol})$
a	$\mathrm{SO}_{3}{ }^{-}$	$(1.3 \pm 0.6) \times 10^{-6 d}$	$0.7{ }^{h}$	-4.2
b			$1.0{ }^{\text {i }}$	0
c	$\mathrm{SO}_{3}{ }^{-}$	$(4.7 \pm 0.2) \times 10^{-4}$	1.1	4.0
c	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	$(1.1 \pm 0.2) \times 10^{-6 d}$		
d	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	$0.33 \pm 0.04^{\text {e }}$	3.1	8.1
e	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	f	46	16.2
f	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	$(1.6 \pm 0.1) \times 10^{-2}$	5.4×10^{2}	16.3^{k}
g	$\mathrm{SO}_{3}{ }^{-}$	$(4.0 \pm 0.5) \times 10^{-4} 8$	1.0×10^{38}	18.0
h	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	$0.14 \pm 0.01^{e, 8}$	2.9×10^{38}	19.3
i	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	f	1.4×10^{4}	27.6
j	$\mathrm{SO}_{3}{ }^{-}$	$(3.8 \pm 0.3) \times 10^{-2}$	$6.2 \times 10^{4 j}$	29.1
J	$\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$	$(2.0 \pm 0.3) \times 10^{-4}$	5.7×10^{4}	

${ }^{a}$ In $5 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, \mu=0.5\left(\mathrm{NaClO}_{4}\right), T=20^{\circ} \mathrm{C}$, unless otherwise indicated. ${ }^{b}$ From HPLC analysis at five or more different $\left[\mathrm{N}_{3}{ }^{-}\right.$. Error limits $\leq 10 \%$. ${ }^{\text {a }}$ At the $6-31 \mathrm{G} * / 3-21 \mathrm{G}$ level. ${ }^{d}$ Extrapolated to $20{ }^{\circ} \mathrm{C}$ from measurements at $50-70^{\circ} \mathrm{C} \cdot{ }^{f} \geq 1 \mathrm{~s}^{-1}$ at $20{ }^{\circ} \mathrm{C}$. ${ }^{8}$ Reference 2. ${ }^{h}$ At $50^{\circ} \mathrm{C}$. ${ }^{i}$ Fishbein, J. C.; McClelland, R. A. Unpublished results. ${ }^{j}$ Reference $4 .{ }^{k}$ Calculated for $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NAc}^{+}$and its hydration product.
$k_{\mathrm{s}} \approx 1$ (Figure 2). The slope (0.19) indicates that about 25% of $\Delta\left(\Delta H_{1}\right)$ is observed in the transition states for hydration of the cations at $20^{\circ} \mathrm{C}$.
If $k_{\mathrm{az}} \approx 5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1,4} k_{\mathrm{s}}$ can be predicted from the correlation line as shown on the upper x-axis of Figure 2. The cations which fall on the correlation line have sufficient lifetime $\left(1 / k_{\mathrm{s}}>10^{-10} \mathrm{~s}\right)$ to be in diffusional equilibrium with other species in solution, and a $D_{N}+A_{N}\left(S_{N} 1\right)$ mechanism of hydrolysis (Scheme 1) is observed. The predicted values of k_{s} for 3 a and $\mathbf{3 b}\left(1.7 \times 10^{11} \mathrm{~s}^{-1}\right.$ and $2.7 \times 10^{10} \mathrm{~s}^{-1}$, respectively) suggest that they are too short-lived to react as free ions. Instead, the ion pair 2 probably reacts with species present in the solvent shell at the time of ionization $\left(\mathrm{D}_{\mathrm{N}} * \mathrm{~A}_{\text {Nint }}\right) .{ }^{7}$ A similar transition has been observed in reactions of carbenium ions at $k_{\mathrm{s}} \approx 10^{10} \mathrm{~s}^{-1} .^{7}$ There is no evidence of a second-order reaction of $1 \mathrm{a}, \mathrm{X}=\mathrm{SO}_{3}{ }^{-}$, with $\mathrm{N}_{3}{ }^{-}$under these conditions.
$A b$ initio calculations suggest that resonance structure II is considerably more important for 3 than it is for the carbenium ion 14. ${ }^{11}$ The low sensitivity of $k_{a z} / k_{s}$ to the second N -

[^1]

Figure 1. (A) Log k_{0} for hydrolysis of $\operatorname{ArN}(\mathrm{Ac}) \mathrm{OX}$ vs σ^{+}: (O) $\mathrm{X}=$ $\mathrm{SO}_{3}^{-} ;(-) \mathrm{X}=\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$. (B) $\log \left(k_{\mathrm{az}} / k_{\mathrm{s}}\right)$ for $\mathrm{ArN}(\mathrm{Ac})^{+}$vs σ^{+}.
substituent in $3 \mathrm{c}-\mathrm{e}$ and $3 \mathrm{~g}-\mathrm{i}$ indicates that little of the charge in these ions is localized on N. ${ }^{12}$ Charge densities in 3 and 14 are different enough that the sites of attack of hard nucleophiles $\left(\mathrm{N}_{3}{ }^{-}, \mathrm{Cl}^{-}\right.$, and $\mathrm{H}_{2} \mathrm{O}$) on 3 are the ortho and para positions of the ring rather than the benzylic site, as in 14 . This occurs even

though attack on the aromatic ring must be disfavored by the loss of aromaticity that accompanies the attack. Since σ^{+} calibrates the effect of R on the transition state for generation of 14 from the corresponding cumyl chlorides, ${ }^{13}$ it is not
(10) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J. Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision A; Gaussian, Inc.: Pittsburgh, PA, 1992.

Figure 2. $\log \left(k_{\mathrm{az}^{2}} / k_{\mathrm{s}}\right)$ vs ΔH_{1} (eq 1) for $\mathrm{ArNY}^{+}:(\bullet) \mathrm{Y}=\mathrm{H}$; () Y $=\mathrm{CH}_{3} ;(\mathbf{\Delta}) \mathrm{Y}=\mathrm{Ac}$. Upper x-axis shows estimated $\log k_{5}$.
surprising that σ^{+}does not correlate reactivity data for 3 . The effect of R on the stabilities of 3 and 14 is different because more charge is localized at the para position of 3 . In particular, σ^{+}underestimates the π-stabilization effects of the second aromatic ring in $\mathbf{3 g - j}$. The transition states for nucleophilic attack on the aromatic ring of $\mathbf{3}$ and the benzylic site of 14 are also very different. In the former, most of the positive charge remaining in the cation is localized at the para (or ortho) position, while in the latter much of it is localized at the benzylic site.
$\log k_{0}$ is adequately correlated by σ^{+}even though $\log \left(k_{\mathrm{az}} /\right.$ k_{s}) is not (Figure 1). The reaction which generates 3 resembles the formation of $\mathbf{1 4}$ from cumyl chlorides because in both cases cleavage of a bond to a saturated atom occurs, leading to a transition state with a partial positive charge on that atom. Because hybridization changes are not complete in the transition state, this charge is not as delocalized as it is in the completely formed cation. Therefore, reactions which generate nitrenium ions from $\mathrm{N}-\mathrm{X}$ species may show a rate correlation with σ^{+} even though the reactivity patterns of the corresponding nitrenium ions do not.

Acknowledgment. This work was supported by the American Cancer Society ($\mathrm{CN}-23 \mathrm{~K}$). MO calculations were performed on the Cray Y-MP8/864 at the Ohio Supercomputer Center. M.N. completed part of this work at the University of New England, Armidale, NSW, Australia. L.A.S. received a NSF-REU fellowship (CHE-9322137).
(11) The 3-21G structure of $\mathbf{3 b}$ has strongly alternating bond lengths in the ring. Starting with $\mathrm{C}(1, \mathrm{~N})-\mathrm{C}(2)$ anti to the $\mathrm{N}-\mathrm{H}$ bond, the bond lengths are $1.4558,1.3569,1.4005,1.4172,1.3476$, and $1.4582 \AA$. In 13, bond lengths starting with $\mathrm{C}(1, \mathrm{C})-\mathrm{C}(2)$ are $1.4190,1.3686$, and $1.3924 \AA$. Charges (H summed into C) at $\mathrm{C}-4$ of $\mathbf{3 b}$ and $\mathbf{1 3}$ are 0.2745 and 0.1709 , respectively.
(12) The α-substituent effects are larger in the more reactive 4 -Me series ($\mathbf{3 c} \mathbf{c} \mathbf{e}$). This suggests less charge delocalization in the ring of the $4-\mathrm{Me}$ series.
(13) Okamoto, Y.; Brown, H. C. J. Org. Chem. 1957, 22, 485-494. Brown, H. C.; Inukai, T. J. Am. Chem. Soc. 1961, 83, 4825-4829.

[^0]: (1) All new compounds were fully characterized. Where necessary, authentic samples were synthesized to confirm identities.
 (2) Novak, M.; Kahley, M. J.; Eiger, E.; Helmick, J. S.; Peters, H. E. J. Am. Chem. Soc. 1993, 115, 9453-9460.
 (3) The kinetics of the decomposition of 1 e and $1 \mathrm{i}, \mathrm{X}=\mathrm{C}(\mathrm{O})-t-\mathrm{Bu}$, were too fast to monitor. Constant yields of the rearrangement products (Scheme 1) with varying [$\mathrm{N}_{3}{ }^{-}$] indicate that k_{0} is independent of $\left[\mathrm{N}_{3}{ }^{-}\right]$.
 (4) Davidse, P. A.; Kahley, M. J.; McClelland, R. A.; Novak, M. J. Am. Chem. Soc. 1994, 116, 4513-4514.
 (5) Young, P. R.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 82388248.
 (6) Helmick, J. S.; Martin, K. A.; Heinrich, J. L.; Novak, M. J. Am. Chem. Soc. 1991, 113, 3459-3466. Gassman, P. G.; Campbell, G. A. 1971, 93, 2567-2569; 1972, 94, 3891-3896.
 (7) Richard, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 46894691; 1984, 106, 1373-1383. Richard, J. P.; Amyes, T. L.; Vontor, T. J. Am. Chem. Soc. 1991, 113, 5871-5873.
 (8) $\log k_{\mathrm{s}}$ for diarylmethyl and triarylmethyl carbenium ions correlates better with σ^{c+} than with σ^{+}: McClelland, R. A.; Kanagasabapathy, V. M.; Banait, N. S.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 3966-3972.

[^1]: (9) Two of the least reactive ions, $\mathbf{3 g}$ and $\mathbf{3 j}$, react with $\mathrm{N}_{3}{ }^{-}$with rate constants of $5.1 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $4.2 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively (ref 4). The other cations must also react with $\mathrm{N}_{3}-$ at diffusion-limited rates.

